Jawabanpaling sesuai dengan pertanyaan sketsalah grafik fungsi berikut y=2x^(2)+9x. Berikut Ini Adalah Pembahasan Dan Kunci Jawaban Matematika Kelas 9 Semester 1 Halaman 102, 103. Y 4 x dan y 4 x c. Apakah relasi yang didefinisikan seperti berikut ini merupakan suatu fungsi? Sketsalah grafik fungsi berikut a. Y 8 X Dan Y 8 X X. Sebuah bola
Sketsalah grafik fungsi berikut ini. A. y=2x²+9x B. y=8x²-16x+6 Jawaban a. fungsi y = 2x² + 9x memotong sumbu x pada saat y = 0 y = 2x² + 9x 0 = 2x² + 9x x2x + 9 = 0 x = 0 atau 2x + 9 = 0 2x = -9 x = – ⁹/₂ memotong sumbu y pada saat x = 0 y = 2x² + 9x y = 20² + 90 y = 0 + 0 y = 0 determinan d = b² – 4ac = 9² – = 81 – 0 = 81 titik puncak fungsi atau titik balik = -b/2a , -d/4a = -⁹/₄, ⁻⁸¹/₈ a = 2 a > 0 grafik menghadap keatas B. y = 8x² – 16x + 6 memotong sumbu x ketika y = 0 8x² – 16x + 6 = 0 4x – 2 2x – 3 = 0 4x – 2= 0 atau 2x – 3 = 0 4x = 2 2x = 3 x = 2/4 = 1/2 x = 3/2 memotong sumbu y pada saat x = 0 y = 8x² – 16x + 6 y = – + 6 y = 6 titik balik xa = -b/2a = 16/16 = 1 ya = – + 6 = 8 – 16 + 6 = -2 714 total views, 1 views today
Jawabanpaling sesuai dengan pertanyaan Sketsalah grafik fungsi berikut y=2x^(2)+9x. Belajar. Primagama. ZeniusLand. Profesional. Fitur. Paket Belajar. Promo. Testimonial. Blog. Panduan. Bagikan. Sketsalah grafik fungsi berikut y = 2 x 2 + 9 x y=2x^2+9x y = 2 x 2 + 9 x . Jawaban. Untuk menjawab soal ini, kita akan coba menentukan nilai
Hallo Raya R, Kakak bantu jawab yaa Jawaban Grafik fungsi kuadrat terlampir pada gambar di bawah ini. Ingat! âž¡ï¸ Langkah-langkah yang dilakukan untuk menggambar grafik fungsi kuadrat y = ax² + bx + c adalah a. Tentukan titik potong grafik terhadap sumbu x b. Tentukan titik potong grafik terhadap sumbu y c. Tentukan persamaan sumbu simetri d. Tentukan nilai optimum fungsi e. Tentukan titik puncak f. Hubungkan titik-titik yang diperoleh pada bidang cartesius âž¡ï¸ Rumus untuk menentukan persamaan sumbu simetri fungsi kuadrat y = ax² + bx + c adalah sebagai berikut xp = - b / 2a âž¡ï¸ Rumus untuk menentukan nilai optimum fungsi kuadrat y = ax² + bx + c adalah sebagai berikut yp = -D/4a âž¡ï¸ Rumus untuk menentukan diskriminan fungsi kuadrat adalah sebagai berikut D = b² - 4ac dengan D Diskriminan a Koefisien x² b koefisien x c konstanta Dari soal diketahui fungsi kuadrat nya adalah y = 2x² + 9x. Dengan menggunakan konsep di atas, diperoleh perhitungan sebagai berikut ⺠Titik potong fungsi terhadap sumbu x, maka y = 0 y = 2x² + 9x 0 = 2x² + 9x 0 = x 2x + 9 x 2x + 9 = 0 maka x = 0 atau 2x + 9 = 0 2x = -9 x = -9/2 x = -4 1/2 Jadi titik potong terhadap sumbu x adalah 0, 0 dan -4 1/2, 0 ⺠Titik potong fungsi terhadap sumbu y, maka x = 0 y = 2x² + 9x y = 20² + 90 y = 0 + 0 y = 0 Jadi titik potong terhadap sumbu y adalah 0, 0 ⺠Persamaan sumbu simetri y = 2x² + 9x -> a = 2, b = 9 dan c = 0 xp = -b / 2a xp = -9 / 22 xp = -9/4 xp = -2 1/4 ⺠Nilai Optimum fungsi kuadrat y = 2x² + 9x -> a = 2, b = 9 dan c = 0 yp = - D / 4a yp = - b² - 4ac / 4a yp = - 9² - 420 / 42 yp = - 81 - 0 / 8 yp = - 81 / 8 yp = - 10 1/8 ⺠Titik puncak fungsi kuadrat Titik puncak = xp, yp Titik puncak = -2 1/4, -10 1/8 Dengan menghubungkan titik-titik yang sudah diperoleh, dapat digambarkan grafik funngsi kuadrat tersebut seperti yang dilampirkan pada gambar di bawah ini. Dengan demikian, gambar grafik fungsi seperti yang terlampir di bawah ini. Terima kasih, semoga membantu
Pertanyaan sketsalah grafik fungsi berikut ini. a. y = 2x² + 9x. Mau dijawab kurang dari 3 menit? Coba roboguru plus! roboguru plus!
Tentukan sumbu simetri grafik fungsi di bawah ini y = 2×2 – 5x, pembahasan kunci jawaban Matematika kelas 9 halaman 102 103 Latihan Sumbu Simetri dan Titik Optimum materi Semester 1. Silahkan kalian pelajari materi Bab II Persamaan dan Fungsi Kuadrat pada buku matematika kelas IX Kurikulum 2013 Revisi 2018. Pembahasan kali ini merupakan lanjutan dari tugas sebelumnya, dimana kalian telah mengerjakan soal-soal halaman 92 93 Ayo Kita Tinjau Ulang secara lengkap. Latihan Sumbu Simetri dan Titik Optimum 1. Tentukan sumbu simetri grafik fungsi di bawah ini. a. y = 2x2 – 5x b. y = 3x2 + 12x c. y = –8x2 − 16x − 1 Jawaban a. y = 2×2 – 5x a = 2 b = -5 c = 0 Jadi sumbu simetri x = -b/2a = -5/22 = 5/4 b. y = 3×2 + 12x a = 3 b = 12 c = 0 Jadi sumbu simetri x = -b/2a = -12/23 = -12/6 = -2 c. y = -8×2 – 16x – 1 a = -8 b = -16 c = -1 Jadi sumbu simetri x = -b/2a = -16 / 2-8 = 16/-16 = -1 2. Tentukan nilai optimum fungsi berikut ini. a. y = –6x2 + 24x − 19 b. y = 2/5x2 – 3x + 15 c. y = -3/4x2 + 7x − 18 3. Sketsalah grafik fungsi berikut ini. a. y = 2x2 + 9x b. y = 8x2 − 16x + 6 Jawaban, buka disini Sketsalah Grafik Fungsi Berikut Ini y = 2×2 + 9x Demikian pembahasan kunci jawaban Matematika kelas 9 halaman 102 103 Latihan pada buku semester 1 kurikulum 2013 revisi 2018. Semoga bermanfaat dan berguna bagi kalian. Kerjakan juga pembahasan soal lainnya. Terimakasih, selamat belajar!
Sketsalahgrafik fungsi berikut ini. - 17944209 safiradwiyanti8 safiradwiyanti8 28.09.2018 Matematika Sekolah Menengah Pertama terjawab • terverifikasi oleh ahli Sketsalah grafik fungsi berikut ini. A. y=2x²+9x B. y=8x²-16x+6 1 Lihat jawaban kurang jelas deh gambarnya Iklan
Halo, Mino M. Kakak bantu jawab ya. Jawaban gambar grafik fungsi terlampir di bawah Ingat kembali langkah-langkah menggambar grafik fungsi kuadrat a. Tentukan titik potong terhadap sumbu X terjadi ketika y=0 b. Tentukan titik potong terhadap sumbu Y terjadi ketika x=0 c. Tentukan titik optimum dengan titik koordinat -b/2a,f-b/2a d. Hubungkan titik-titik yang diperoleh dari langkah a, b, dan c. Diketahui fungsi kuadrat y=8x²-16x+6 sehingga a = 8, b = -16, dan c = 6 a. titik potong terhadap sumbu X terjadi ketika y=0 y=8x²-16x+6 0 = 2x-14x-6 Pembuat nol fungsi 2x-1 = 0 2x = 1 x = 1/2 atau 4x-6 = 0 4x = 6 x = 6/4 x = 3/2 Oleh karena itu, titik potong terhadap sumbu X adalah 1/2,0 dan 3/2,0 b. titik potong terhadap sumbu Y terjadi ketika x=0 y=8x²-16x+6 y=80²-160+6 y=6 Oleh karena itu, titik potong terhadap sumbu Y adalah 0,6 c. titik optimum x = -b/2a x = -16/28 x = 16/16 x = 1 Substitusikan x = 1 ke y=8x²-16x+6sehingga y=8x²-16x+6 y=81²-161+6 y = 8 - 16 + 6 y = -2 Oleh karena itu, titik optimumnya adalah 1,-2 Hubungkan titik-titik yang telah ditemukan, maka diperoleh grafik seperti berikut. Jadi, grafik fungsi kuadrat y=8x²-16x+6 adalah seperti berikut.
10sketsalah grafik fungsi berikut ini y=2x2 +9x Di dalam lingkaran yang berdiameter 20cm terdapat sebuah juring dengan besar sudutpusat 450. Luas juring tersebut adalah.
Halo, Roy H! Kakak bantu ya. Jawabannya Ada pada gambar di bawah. Pembahasan Langkah-langkah untuk menggambar grafik fungsi kuadrat y = fx = ax² + bx + c 1. Tentukan diskriminan D = b² − 4ac a. Jika D > 0, maka memotong sumbu-x di dua titik b. Jika D = 0, maka menyinggung sumbu-x di satu titik c. Jika D 0, maka fungsi terbuka ke atas dan memiliki nilai minimum b. Jika a 0, maka fungsi kuadrat tersebut memotong sumbu-x di dua titik 2. Sehingga titik potong terhadap sumbu-x, maka y=0 y=2x²+9x 0=2x²+9x difaktorkan 0=x2x+9 x=0 atau x=-9/2 →0,0 dan -9/2,0 3. Titik potong terhadap sumbu-y, jika x = 0 y=2x²+9x y=20²+90 y =0 → 0,0 4. Persamaan sumbu simetri yaitu x = −b/2a x = −b/2a x = −9/22 x = -9/4 5. Karena a > 0, maka memiliki nilai minimum y = -D/4a yaitu y = -D/4a y=-81/42 y=-81/8 6. Titik balik minimum −b/2a, -D/4a = -9/4, 81/8 7. Titik-titk yang lainnya x = −2 -> y=2x²+9x y=2-2²+9-2 y = 8 -18 y = -10 →−2,-10 x = -4 -> y=2x²+9x y=2-4²+9-4 y = 32 -36 y = -4 → -4,-4 8. dibuat parabola yang melalui titik-titik tersebut Jadi, gambar grafik fungsi kuadrat y=2x²+9x adalah
Berikutini adalah pembahasan dan Kunci Jawaban Matematika Kelas 9 Semester 1 Halaman 102, 103. Bab 2 Persamaan dan Fungsi Kuadrat Latihan 2.3 Hal 102, 103 Nomor 1 - 10 Essai. Kunci jawaban ini dibuat untuk membantu mengerjakan soal matematika bagi kelas 9 di semester 1 halaman 102, 103.
Halo Adella, jawaban untuk soal ini pada gambar di bawah ya. Soal diatas merupakan materi fungsi kuadrat. Ingat! Bentuk umum fungsi kuadrat y = f ¥ = a¥Â² + b¥+ c Bentuk umum persamaan kuadrat a¥Â²+b¥+c= 0 , a ≠0 Keterangan ¥ = variabel a = koefisien kuadrat dari ¥Â² b = koefisien liner dari ¥ c = konstanta Cara membuat grafik persamaan kuadrat adalah dengan mencari dua koordinat titik 1. Memotong sumbu ¥ Maka nilai y = 0 kemudian subtitusikan ke persamaan garis untuk mencari nilai ¥. Diperoleh koordinat yang memotong sumbu ¥. 2. Memotong sumbu y Maka nilai ¥= 0 kemudian subtitusikan ke persamaan garis untuk mencari nilai y. Diperoleh koordinat yang memotong sumbu y. 3. Menentukan sumbu simetri xp = – b/2a 4. Menentukan titik puncak dengan titik koordinat 5. Gambar grafik fungsi kuadrat Diketahui, Asumsikan Persamaan y = 2¥Â² + 9¥ Ditanyakan, Grafik garis persamaan Dijawab, 1. Titik potong dengan sumbu ¥ maka y = 0 y = 2¥Â² + 9¥ 0 = 2¥Â² + 9¥ Cari faktor dari 2¥Â² + 9¥=0 2¥Â² + 9¥=0 ¥ 2¥+ 9=0 ¥ = 0 atau 2¥ + 9 = 0 ¥ = - 9/2 ¥ = -4,5 Di dapatkan nilai ¥ = 0 atau ¥ = - 9 sehingga titiknya adalah 0,0 dan -4,5,0. 2. Titik potong dengan sumbu y maka ¥ = 0 y = 2¥Â² + 9¥ y = 20² + 90 y = 0 Didapatkan titik koordinat 0, 0 3. Menentukan sumbu simetri xp = – b/2a 2¥Â² + 9¥=0 maka a = 1, b = 9 dan c = 0 xp = -b/2a = - 9/ 22 = -9/4 = -2,25 4. Menentukan titik puncak dengan titik koordinat Subtitusi xp =-2,25 ke persamaan 2¥Â² + 9¥=0 yp= f -2,25 = 2¥Â² + 9¥ = 2- 2,25 ² + 9-2,25 = 2 5,0625 - 20,25 = 10,125 - 20,25 = - 10,125 Di dapatkan titik puncak xp, yp = -2,25, - 10,125 Gambar grafik di bawah ini Terima kasih sudah bertanya, semoga bermanfaat. Terus gunakan Roboguru sebagai teman belajar kamu yaŸ˜Š
AjX5j. m8meq33rgd.pages.dev/172m8meq33rgd.pages.dev/98m8meq33rgd.pages.dev/108m8meq33rgd.pages.dev/227m8meq33rgd.pages.dev/315m8meq33rgd.pages.dev/27m8meq33rgd.pages.dev/466m8meq33rgd.pages.dev/114
sketsalah grafik fungsi berikut ini y 2x2 9x